
Pololu Jrk USB Motor
Controller User’s Guide

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

https://www.pololu.com/docs/0J38/all Page 1 of 55

1. Overview . 3

1.a. Module Pinout and Components . 6

1.b. Supported Operating Systems . 9

1.c. PID Calculation Overview . 10

2. Contacting Pololu . 12

3. Configuring the Motor Controller . 13

3.a. Installing Windows Drivers and the Configuration Utility 13

3.b. Input Options . 18

3.c. Feedback Options . 20

3.d. PID Options . 22

3.e. Motor Options . 24

3.f. Error Response Options . 27

3.g. The Plots Window . 29

3.h. Upgrading Firmware . 30

4. Using the Serial Interface . 33

4.a. Serial Modes . 33

4.b. TTL Serial . 34

4.c. Command Protocols . 36

4.d. Cyclic Redundancy Check (CRC) Error Detection . 37

4.e. Motor Control Commands . 39

4.f. Error Reporting Commands . 41

4.g. Variable Reading Commands . 44

4.h. Daisy-Chaining . 46

4.i. Serial Example Code . 48

4.i.1. Cross-platform C . 48

4.i.2. Windows C . 50

5. Setting Up Your System . 51

6. Writing PC Software to Control the Jrk . 55

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

Page 2 of 55

Pololu Jrk 21v3 USB motor controller with
dimensions.

Bottom of the Jrk 12v12 USB motor controller
with feedback with dimensions.

1. Overview

The jrk family of versatile, general-purpose

motor controllers supports a variety of

interfaces, including USB. Analog voltage and

tachometer (frequency) feedback options allow

quick implementation of closed-loop servo

systems, and a free configuration utility (for

Windows) allows easy calibration and

configuration through the USB port.

There are two different jrk motor controllers:

The jrk 21v3 [https://www.pololu.com/product/1392]

has a broad operating range from 5 V to 28 V.

The continuous output current of 3 A (5 A peak)

allow this board to control most small DC

brushed motors.

The jrk 12v12 [https://www.pololu.com/product/1393]

has an operating range from 6 V to 16 V. The

high continuous output current of 12 A (30 A

peak) allow this board to control many medium-

sized DC brushed motors

Main Features of the Jrk 21v3

• 5 V to 28 V operating supply range.

• 3 A maximum continuous current

output (5 A peak).

• Automatic motor driver shutdown on

under-voltage, over-current, and over-

temperature conditions.

Main Features of the Jrk 12v12

• 6 V to 16 V operating supply range.

• 12 A maximum continuous current output (30 A peak).

Main Features of all Jrk Motor Controllers

• Simple bidirectional control of one DC brush motor.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 3 of 55

https://a.pololu-files.com/picture/0J1593.1200.jpg?07d664fa4bbdb032ba6b3f39383e7fde
https://a.pololu-files.com/picture/0J1593.1200.jpg?07d664fa4bbdb032ba6b3f39383e7fde
https://a.pololu-files.com/picture/0J1757.1200.jpg?f8111a26c2fe7285ae826a70d063c548
https://a.pololu-files.com/picture/0J1757.1200.jpg?f8111a26c2fe7285ae826a70d063c548
https://www.pololu.com/product/1392
https://www.pololu.com/product/1393

• Four communication or control options:

◦ USB interface for direct connection to a PC.

◦ Full-duplex, TTL-level asynchronous serial interface for direct connection to

microcontrollers or other embedded controllers.

◦ Hobby radio control (RC) pulse width (PWM) interface for direct connection to an

RC receiver or RC servo controller.

◦ 0–5 V analog voltage interface for direct connection to potentiometers and analog

joysticks.

• Two closed-loop feedback options:

◦ 0–5 V analog voltage.

◦ Frequency/tachometer digital input up to 2 MHz with 1 ms PID period.

◦ (Open-loop control with no feedback also available.)

• Simple configuration and calibration over USB with free configuration program (Windows 10,

Windows 8, Windows 7, Vista, Windows XP compatible).

• Configurable parameters include:

◦ PID period and PID constants (feedback tuning parameters).

◦ Maximum current.

◦ Maximum duty cycle.

◦ Maximum acceleration.

◦ Error response.

◦ Input calibration (learning) for analog and RC control.

• Optional CRC error detection eliminates communication errors caused by noise or software

faults.

• Reversed power protection.

• Field-upgradeable firmware.

• Optional feedback potentiometer disconnect detection.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 4 of 55

Specifications

_ Jrk 21v3 Jrk 12v12

Motor channels: 1 1

Operating voltage: 5 – 28 V 6 – 16 V

Continuous output current: 3 A 12 A

Peak output current: 5 A 30 A

Auto-detect baud rate range: 300 – 115,200 bps 300 – 115,200 bps

Available fixed baud rates: 300 – 115,200 bps 300 – 115,200 bps

Available PWM frequencies: 20 kHz, 5 kHz 20 kHz, 5 kHz

Reverse voltage protection?: Yes Yes

USB connector style: USB Mini-B USB Mini-B

Included Hardware

The jrk 21v3 and jrk 12v12 each ship with a straight 0.1″ breakaway male header

[https://www.pololu.com/product/965] strip and two appropriately sized 2-pin terminal blocks (3.5 mm pitch

for the 21v3 and 5 mm pitch for the 12v12). To provide maximum flexibility, none of these parts are

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 5 of 55

https://a.pololu-files.com/picture/0J1592.1200.jpg?5825ce2b7cd91237fc985a3b82c30fc9
https://a.pololu-files.com/picture/0J1592.1200.jpg?5825ce2b7cd91237fc985a3b82c30fc9
https://a.pololu-files.com/picture/0J1594.1200.jpg?9e7eb649a5b49ca4ed47c1b04e4e71da
https://a.pololu-files.com/picture/0J1594.1200.jpg?9e7eb649a5b49ca4ed47c1b04e4e71da
https://a.pololu-files.com/picture/0J1756.1200.jpg?0580da4d4caff9312b5763ca40749e9e
https://a.pololu-files.com/picture/0J1756.1200.jpg?0580da4d4caff9312b5763ca40749e9e
https://a.pololu-files.com/picture/0J1758.1200.jpg?49d16578c73dfdc24b8e75176b0e07b5
https://a.pololu-files.com/picture/0J1758.1200.jpg?49d16578c73dfdc24b8e75176b0e07b5
https://www.pololu.com/product/965
https://www.pololu.com/product/965

soldered to the board (unless you ordered our fully assembled jrk 21v3 [https://www.pololu.com/product/

1394], which ships with these parts soldered in as shown in the assembled jrk 21v3 picture above).

For the most compact installation, you can solder wires directly to the jrk pads themselves and skip

using the included hardware. The included hardware allows you to make less permanent connections.

You can break the header strip into smaller pieces, such as an 8×1 piece and two 3×1 pieces, and

solder these strips into the jrk’s I/O pads.

The three mounting holes are intended for use with #2 screws [https://www.pololu.com/category/101/nuts-

and-screws] (not included).

Note: A USB A to mini-B cable [https://www.pololu.com/product/130] (not included) is

required to connect this device to a computer.

1.a. Module Pinout and Components

Pololu Jrk 21v3 USB motor controller with feedback, labeled top view.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 6 of 55

https://www.pololu.com/product/1394
https://www.pololu.com/product/1394
https://www.pololu.com/category/101/nuts-and-screws
https://www.pololu.com/category/101/nuts-and-screws
https://www.pololu.com/product/130
https://a.pololu-files.com/picture/0J1715.1200.jpg?084db525fbf328ca4f12935298a44c37
https://a.pololu-files.com/picture/0J1715.1200.jpg?084db525fbf328ca4f12935298a44c37

Pololu Jrk 12v12 USB motor controller with feedback, labeled top view.

The Pololu jrk USB motor controller can connect to a computer’s USB port via a USB A to mini-B

cable [https://www.pololu.com/product/130] (not included). The USB connection is used to configure the

motor controller. It can also be used to send commands to the motor controller, get information about

the motor controller’s current state, and send and receive TTL serial bytes on the TX and RX lines.

Power for the motor must be supplied to the jrk on the VIN and GND lines pictured on the right side

of the diagram above. Your power source must be capable of delivering the current your motor will

draw. The jrk has reverse power protection on the motor power input lines, so the board will not be

damaged if the motor power inputs are accidentally switched. If the VIN supply is not present, the jrk’s

microcontroller can be powered directly from USB and perform all of its functions except for driving the

motor.

For the jrk 21v3, the input voltage should be 5–28 V (the recommended operating voltage is 8–28 V,

but the jrk 21v3’s motor driver has derated performance down to 5 V and transient protection to 40 V).

The jrk 21v3’s motor driver can supply a continuous 3 A with peaks up to 5 A.

For the jrk 12v12, the input voltage should be 6–16 V. The jrk 12v12’s motor driver can supply a

continuous 12 A with peaks up to 30 A.

The jrk has a linear voltage regulator that derives 5 V from the VIN supply. The 5 V supply is used as

the internal logic supply for the jrk and is also available at several pins for powering devices such as

external microcontrollers and feedback sensors (such as potentiometers). Because the regulator must

dissipate excess power as heat, the available output current is dependent on the input voltage: 50 mA

is available for VIN up to 12 V; the available current drops off linearly from 50 mA at 12 V to zero at

30 V.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 7 of 55

https://a.pololu-files.com/picture/0J1759.1200.jpg?fae62ba01271177c7d09e3ea3d538cfb
https://a.pololu-files.com/picture/0J1759.1200.jpg?fae62ba01271177c7d09e3ea3d538cfb
https://www.pololu.com/product/130
https://www.pololu.com/product/130

The jrk has three indicator LEDs:

• The green USB LED indicates the USB status of the device. When the jrk is not connected

to a computer via the USB cable, the green LED will be off. When you connect the jrk to

USB, the green LED will start blinking slowly. The blinking continues until the jrk receives

a particular message from the computer indicating that the jrk’s USB drivers are installed

correctly. After the jrk gets this message, the green LED will be on, but it will flicker briefly

when there is USB activity. The configuration utility constantly streams data from the jrk, so

when the configuration utility is running and connected to the jrk, the green LED will flicker

constantly.

• The red error LED indicates an error. If there is an error stopping the motor (besides the

Awaiting Command error bit), then the red LED will be on. The red LED is tied to the active-

high output ERR, so when there is an error, ERR will be driven high, and otherwise it will be

pulled low through the LED.

• The yellow output status LED indicates the status of the motor. If the yellow LED is off,

then an error (other than the Awaiting Command error bit) is stopping the motor. If the yellow

LED is flashing slowly (once per second), then either the motor is off (the Awaiting Command

Error bit is set) or the jrk is in speed control mode and the duty cycle is zero. If the yellow LED

is on solid, then the motor is on and the motor has reached the desired state. For analog and

pulse width feedback modes, this means that the target is within 20 of the scaled feedback.

For speed control mode, this means that the duty cycle equals the duty cycle target. If the

yellow LED is flashing quickly (16 times per second), then the motor is on and the motor has

not reached its desired state.

The ERR line is an optional output that is tied to the red error LED described above. It is driven high

when the red LED is on, and it is a pulled low through the red LED when the red LED is off. Since the

ERR line is never driven low, it is safe to connect the ERR line of multiple jrks together. Please note,

however, that doing this will cause the error LEDs of all connected jrks to turn on whenever one jrk

experiences an error; the ERR output of the jrk experiencing the error will drive the LEDs of any other

jrks it is connected to, even though they are not experiencing error conditions themselves. For more

information on the possible error conditions and response options, please see Section 3.f.

The TX line transmits non-inverted, TTL (0 – 5 V) serial bytes. These bytes can either be responses

to serial commands sent to the jrk, or arbitrary bytes sent from the computer via the USB connection.

For more information about the jrk’s serial interface, see Section 4.

The RX line is the jrk’s control input. In serial input mode, the RX line is used to receive non-inverted,

TTL (0 – 5 V) serial bytes. These bytes can either be serial commands for the jrk, arbitrary bytes to

send back to the computer via the USB connection, or both. For more information about the jrk’s serial

interface, see Section 4. In analog input mode, RX is the analog input line used to determine the

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 8 of 55

system’s target output. In pulse width input mode, the jrk measures the duration of pulses on the RX

line to determine the system’s target output. Please see Section 3.b for more information on control

input signals.

The FB line is the jrk’s feedback input. In analog feedback mode, the voltage on the FB line is used as

a measurement of the output of the system. In frequency feedback mode, the frequency of low-to-high

transitions on the FB line is used as a measurement of the output of the system. Please see Section

3.c for more information on feedback signals.

The AUX line is an output that is generally high whenever the jrk has power. The line will only go low

for two reasons:

1. If the jrk’s microcontroller goes to sleep (because there is no VIN supply and the device has

entered USB suspend mode), the pin is tri-stated and pulled low through a resistor.

2. If the Detect disconnect with AUX option is enabled for either the feedback or the input, then

the jrk will drive AUX low for about 150 μs each PID period to check if the feedback and/or

analog inputs are disconnected.

The RST pin can be driven low to perform a hard reset of the jrk’s microcontroller, but this should

generally not be necessary for typical applications. The line is internally pulled high, so it is safe to

leave this pin unconnected.

1.b. Supported Operating Systems

The jrk works under Microsoft Windows 10, Windows 8, Windows 7, Windows Vista, Windows XP,

Linux, and Mac OS X 10.7 or later.

The configuration utility works only in Windows, so the jrk must be initially configured from a Windows

computer, but after that it can be controlled from a Linux or Mac computer.

Under Linux, the two virtual COM ports created by the jrk should appear as devices with names like

/dev/ttyACM0 and /dev/ttyACM1 (the number depends on how many other ACM devices you have

plugged in) and you can use any terminal program (such as screen) to send and receive bytes on

those ports. Alternatively, you can use the Pololu USB Software Development Kit which supports Linux

and has example applications that control the jrk using its native USB interface (see Section 6).

Under Mac OS X 10.7 or later, the two virtual COM ports created by the jrk should appear as devices

with names like /dev/cu.usbmodem00034567 and you can use any terminal program (such as screen)

to send and receive bytes on those ports.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 9 of 55

Mac OS X compatibility: We have confirmed that the jrk works on Mac OS X 10.7 and

we can assist with advanced technical issues, but most of our tech support staff does

not use Macs, so basic support for Mac OS X is limited.

There is an issue that prevents the jrk from working with macOS 10.11 or later.

1.c. PID Calculation Overview

The jrk is designed to be part of a control system in which the output (usually a motor position or

speed) is constantly adjusted to match a specified target value. To achieve this, it constantly measures

the state of the system and responds based on the latest information. The information processing

performed by the jrk is outlined in the diagram below:

Diagram of a typical feedback system,
showing quantities computed by the

jrk.

In this diagram, each arrow represents a specific number measured or computed by the jrk, and the

blue boxes represent the internal computations that each occur once per PID period. The PID period

can be set in 1 ms increments and is one of about 50 configurable parameters that affect the behavior

of the system. For more information about configuring the jrk, see Section 3. The jrk uses the following

measurements to determine the output:

• The input is measured as a value from 0 to 4095. In analog voltage input mode, this

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 10 of 55

represents a voltage level of 0 to 5 V. In RC mode, the number is a pulse width in units of

2/3 μs. The input is adjusted according to input scaling parameters to determine the target,

also a value from 0 to 4095 (see Section 3.b).

• The feedback is measured as a value from 0 to 4095. In analog voltage feedback mode, this

represents a voltage level of 0 to 5 V. In digital frequency mode, it is a representation of the

output speed (see Section 3.c.) The jrk uses this value to compute the scaled feedback,

which is a representation of the output of the entire control system. A scaled feedback of

0 should represent the minimum position of the system, and 4095 should represent the

maximum position.

• The current through the motor is measured as a number from 0 to 255. A calibration value

relates this to an actual current in amps.

Every PID cycle, the jrk performs the following computations to determine the behavior of the motor

(see Section 3.d for more information):

1. The error is computed as the difference of scaled feedback and target (error = scaled

feedback − target).

2. An implementation of the PID algorithm is applied to the error. PID stands for the three terms

that are added together: proportional (proportional to the error), integral (proportional to the

accumulated sum of the error over time), and derivative (proportional to the difference of the

error relative to the previous PID period.) The three constants of proportionality are the most

important parameters determining the behavior of the control system. The result of the PID

algorithm is a number from -600 to +600 called the duty cycle target.

3. The duty cycle target is reduced according to various configurable limits, including

acceleration, current, and maximum duty cycle limits (Section 3.e). The limits are intended

to prevent the system from causing damage to itself under most circumstances.

The resulting value becomes the duty cycle of the PWM (pulse width modulation) signal applied to

the motor. A value of +600 corresponds to 100% duty cycle in the forward direction, a value of -600

corresponds to 100% duty cycle in the reverse direction, and a value of 0 corresponds to 0% duty

cycle or off.

Various parameters and commands have an effect on the steps described above. For example,

feedback may be turned off so that the jrk can become a simple speed controller; in this case the PID

calculation is bypassed and the duty cycle target is just equal to the target minus 2048. In this mode,

limits applied to the duty cycle continue to provide a useful way of preventing damage to the system.

As another example, a command to turn the system off prevents the motors from being driven, but all

measurements and calculations continue to occur normally.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

1. Overview Page 11 of 55

2. Contacting Pololu

You can check the Pololu Jrk 21v3 USB Motor Controller page

[https://www.pololu.com/product/1392] or the Pololu Jrk 12v12 USB

Motor Controller page [https://www.pololu.com/product/1393] for

additional information. We would be delighted to hear from you

about any of your projects and about your experience with the jrk.

You can contact us [https://www.pololu.com/contact] directly or post

on our forum [http://forum.pololu.com/]. Tell us what we did well,

what we could improve, what you would like to see in the future,

or anything else you would like to say!

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

2. Contacting Pololu Page 12 of 55

https://a.pololu-files.com/picture/0J1592.1200.jpg?5825ce2b7cd91237fc985a3b82c30fc9
https://a.pololu-files.com/picture/0J1592.1200.jpg?5825ce2b7cd91237fc985a3b82c30fc9
https://www.pololu.com/product/1392
https://www.pololu.com/product/1392
https://www.pololu.com/product/1393
https://www.pololu.com/product/1393
https://www.pololu.com/contact
http://forum.pololu.com/

3. Configuring the Motor Controller

3.a. Installing Windows Drivers and the Configuration Utility

If you use Windows XP, you will need to have Service Pack 3 [https://technet.microsoft.com/

en-us/windows/windows-xp-service-pack-3.aspx] installed before installing the drivers for the

jrk. See below for details.

Before you connect your Pololu jrk USB motor controller to a computer running Microsoft Windows,

you must install its drivers:

1. Download the jrk drivers and configuration software [https://www.pololu.com/file/0J221/jrk-

windows-121204.zip] (5MB zip)

2. Open the ZIP archive and run setup.exe. If the installer fails, you may have to extract all the

files to a temporary directory, right click setup.exe, and select “Run as administrator”. The

installer will guide you through the steps required to install the Pololu Jrk Configuration Utility,

the jrk command-line utility (JrkCmd), and the jrk drivers on your computer.

3. During the installation, Windows will ask you if you want to install the drivers. Click “Install”

(Windows 10, 8, 7, and Vista) or “Continue Anyway” (Windows XP).

4. After the installation is finished, your start menu will have a shortcut to the Jrk Configuration

Utility (in the Pololu folder). This is a Windows application that allows you to change all of the

settings of your motor controller, as well as see real-time information about its state.

Windows 8, Windows 7, and Windows Vista users: Your computer should now automatically install

the necessary drivers when you connect a jrk. No further action from you is required.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 13 of 55

https://technet.microsoft.com/en-us/windows/windows-xp-service-pack-3.aspx
https://technet.microsoft.com/en-us/windows/windows-xp-service-pack-3.aspx
https://www.pololu.com/file/0J221/jrk-windows-121204.zip
https://www.pololu.com/file/0J221/jrk-windows-121204.zip
https://a.pololu-files.com/picture/0J4151.1200.png?520869c6cdf00a4f869e706d111c71fe
https://a.pololu-files.com/picture/0J4151.1200.png?520869c6cdf00a4f869e706d111c71fe
https://a.pololu-files.com/picture/0J1349.1200.png?f1d347271e7fca57e8e75afd291ac0c1
https://a.pololu-files.com/picture/0J1349.1200.png?f1d347271e7fca57e8e75afd291ac0c1

Windows XP users: Follow steps 5-9 for each new jrk you connect to your computer.

5. Connect the device to your computer’s USB port. The jrk shows up as three devices in

one so your XP computer will detect all three of those new devices and display the

“Found New Hardware Wizard” three times. Each time the “Found New Hardware Wizard”

pops up, follow steps 6-9.

6. When the “Found New Hardware Wizard” is displayed, select “No, not this time” and click

“Next”.

7. On the second screen of the “Found New Hardware Wizard”, select “Install the software

automatically” and click “Next”.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 14 of 55

8. Windows XP will warn you again that the driver has not been tested by Microsoft and

recommend that you stop the installation. Click “Continue Anyway”.

9. When you have finished the “Found New Hardware Wizard”, click “Finish”. After that, another

wizard will pop up. You will see a total of three wizards when plugging in the jrk. Follow steps

6-9 for each wizard.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 15 of 55

After installing the drivers and plugging the jrk in via USB, if you go to your computer’s Device

Manager, you should see three entries for the jrk that look like what is shown below:

Windows 8 device manager showing the Pololu Jrk 21v3
Motor Controller

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 16 of 55

Windows XP device manager showing the Pololu Jrk
21v3 Motor Controller

COM ports

After installing the drivers, if you go to your computer’s Device Manager and expand the “Ports (COM

& LPT)” list, you should see two COM ports for the jrk: the Command Port and the TTL Port. In

parentheses after these names, you will see the name of the port (e.g. “COM5” or “COM6”).

You might see that the COM ports are named “USB Serial Device” in the Device Manager instead of

having descriptive names. This can happen if you are using Windows 10 or later and you plugged the

jrk into your computer before installing our drivers for it. In that case, Windows will set up your jrk using

the default Windows serial driver (usbser.inf), and it will display “USB Serial Device” as the name for

each port. The ports will be usable, but it will be hard to distinguish the ports from each other because

of the generic name shown in the Device Manager. We recommend fixing the names in the Device

Manager by right-clicking on each “USB Serial Device” entry, selecting “Update Driver Software…”,

and then selecting “Search automatically for updated driver software”. Windows should find the jrk

drivers you already installed, which contain the correct name for the port.

If you want to change the COM port number assigned to your USB device, you can do so using the

Device Manager. Bring up the properties dialog for the COM port and click the “Advanced…” button in

the “Port Settings” tab. From this dialog you can change the COM port assigned to your device.

If you use Windows XP and experience problems installing or using the serial port drivers, the cause of

your problems might be a bug in older versions of Microsoft’s usb-to-serial driver usbser.sys. Versions

of this driver prior to version 5.1.2600.2930 will not work with the jrk. You can check what version of this

driver you have by looking in the “Details” tab of the “Properties” window for usbser.sys in C:\Windows\

System32\drivers. To get the fixed version of the driver, you will need to install Service Pack 3

[https://technet.microsoft.com/en-us/windows/windows-xp-service-pack-3.aspx]. If you do not want Service Pack

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 17 of 55

https://technet.microsoft.com/en-us/windows/windows-xp-service-pack-3.aspx
https://technet.microsoft.com/en-us/windows/windows-xp-service-pack-3.aspx

3, you can try installing Hotfix KB918365 instead, but some users have had problems with the hotfix

that were resolved by upgrading to Service Pack 3. The configuration software will work even if the

serial port drivers are not installed properly.

Native USB interface

There should be an entry for the jrk in the “Pololu USB Devices” category of the Device Manager. This

represents the jrk’s native USB interface, and it is used by our configuration software.

3.b. Input Options

The Input tab of the Jrk Configuration Utility

The Input tab of the jrk configuration utility contains settings for how the feedback system (consisting

of the jrk, a motor and a feedback sensor) is externally controlled and monitored. Most importantly,

there are three Input modes:

• Serial indicates that the jrk gets its target setting over a serial interface, either a virtual COM

port or the TTL-level serial port of the jrk, as explained in detail in Section 4.

• Analog voltage is used when an analog voltage source, such as a potentiometer, connected

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 18 of 55

https://a.pololu-files.com/picture/0J1729.1200.png?73b9bff56c1c7be3e2e9f4892a79ce9a
https://a.pololu-files.com/picture/0J1729.1200.png?73b9bff56c1c7be3e2e9f4892a79ce9a

to the RX line is used to set the target. A signal level of 0 V on this line corresponds to an

input value of 0, and signal level of 5 V correponds to an input value of 4092.

• Pulse width is used when the system is to be controlled by the width of digital pulses, such

as those output by a radio-control (RC) receiver, measured on the RX line. In this input mode,

the input value is the width of the most recent pulse, in units of 2/3 μs. For example, a pulse

width of 1500 μs corresponds to an input value of 2250. This input interface accepts pulses

from 400 to 2600 μs at a frequency between 10 and 150 Hz. The jrk will only update the input

value if it has received four valid pulses in a row, and it will generate the Input invalid error

if it goes more than 120 ms without updating the input value. The voltage of the high pulses

must be between 2 and 5 V.

Version 1.3 of the firmware for the Jrk 21v3 and the Jrk 12v12 contains a bug fix that

improves the reliability of the Pulse width input. The update is recommended for devices

with an earlier firmware version number, including all devices shipped before August 25,

2009. See Section 3.h for upgrade information.

Input scaling

The scaling options in this tab determine how the raw input values map to target values, which

determine the output of the system. The parameters Maximum and Minimum should be set to the

maximum and minimum possible values of the input device; these will be scaled to the target values

specified in the right column. For input devices with a clearly defined neutral position, such as

joysticks, parameters Neutral Max and Neutral Min are provided. Any input between Neutral Max and

Neutral Min will be scaled to the neutral value specified in the right column. Setting the two neutral

values to be different allows for a “dead zone”, which is especially desirable in speed control mode.

If the input leaves the range specified by the Absolute Max and Absolute Min parameters, an Input

disconnect error will occur. For convenience, the Invert input direction option is provided. Select this

option to switch the positive and negative input directions.

By default, the scaling is linear, but you can change the Degree parameter to use a higher-degree

polynomial function, which gives you better control near the neutral point.

Clicking the button labeled “Learn…” allows scaling values to be determined automatically: with the

motor off, the program will request that the input be set to its minimum, maximum, and neutral

positions, and the resulting values will be recorded. After learning, if the neutral position is not

important for your system, you may uncheck “Asymmetric” to automatically center the neutral values

between minimum and maximum.

Input analog to digital conversion

In analog mode, the analog to digital conversion panel lets you specify the number of analog samples

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 19 of 55

to average together each PID cycle, which determines the precision and speed of the analog to digitial

conversions. The indicator labeled “PID period exceeded” at the top of the window is provided as a

warning for when the analog sampling takes more time than the specified PID period.

Selecting the Detect disconnect with AUX option activates an extra feature that allows the jrk to detect

if the RX pin becomes disconnected from the analog voltage input device or shorted to 5 V. This option

is intended for use in analog voltage input mode with a potentiometer connected between AUX and

ground. When the option is selected, the jrk will periodically drive the AUX pin low, verifying that this

results in a 0 V signal at RX. If the line does not respond as expected, the Input disconnect error will

occur.

Serial interface

This panel allows the serial ports of the jrk to be configured, including specifying a fixed baud rate and

enabling or disabling a CRC byte for all commands. The Device Number setting is useful when using

the jrk with other devices in a daisy-chained configuration, and the Timeout specifies the duration

before which a Serial timeout error will occur (a Timeout of 0.00 disables the serial timeout feature).

For more details on the serial interface, especially for selecting the appropriate mode for your system,

see Section 4.a.

Manually set target (serial mode only)

This section is provided for debugging and testing systems without using an input device. The target

may be specified directly with the scrollbar or numerical input.

3.c. Feedback Options

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 20 of 55

The Feedback tab of the Jrk Configuration Utility

The Feedback tab of the jrk configuration utility controls the measurements of the output of the control

system. If this section is properly configured, the value of scaled feedback will be 0 when the output

is at the minimum position and 4095 when the output is at its maximum. There are three available

feedback modes:

• None indicates that feedback and the PID calculation are disabled. In this mode, the duty

cycle target is equal to target − 2048 instead of being the result of a PID calculation. This

means that a target of 2648 will correspond to driving the motor full speed forward, 2048 is

brake, and so on. However, the jrk still performs all of its calculations once per “PID period”.

• Analog voltage is used when an analog voltage source, such as a potentiometer, connected

to the FB pin indicates the position of the output. A signal level of 0 V corresponds to a

feedback value of 0, and a signal level of 5 V corresponds to a feedback value of 4092.

• Frequency (digital) is used with speed-measuring devices that generate pulses at a rate

proportional to the speed of the output shaft, such as a tachometer. A simple example is an

optical breakbeam sensor measuring the rotation of a slotted disk. The number of pulses

detected on the FB pin during each PID period is used as a measurement of speed. When

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 21 of 55

https://a.pololu-files.com/picture/0J1730.1200.png?2ec252a69ce41eac6c6fc7f74948fc94
https://a.pololu-files.com/picture/0J1730.1200.png?2ec252a69ce41eac6c6fc7f74948fc94

driving the motor forward (i.e. target > 2048), the feedback value is 2048+n, where n is the

number of pulses, and when driving the motor in reverse, the feedback value is 2048-n. Since

the feedback value must be between 0 and 4095, the jrk can measure at most 2047 pulses

per PID period. This allows for a maximum frequency of approximately 2 MHz with a PID

period of 1 ms.

Feedback scaling

The scaling options in this tab determine how the raw feedback values map to scaled feedback values,

which are intended to be a representation of the output of the system. The parameters Maximum and

Minimum should be set to the maximum and minimum possible values of the output; these will be

converted to scaled feedback values of 4095 and 0, respectively. If the feedback leaves the range

specified by the Absolute Max and Absolute Min parameters, a Feedback disconnect error will occur.

For convenience, the Invert feedback direction option is provided. Select this option if the direction of

motion that you would like to call positive actually results in a decreasing feedback value.

Clicking the button labeled “Learn…” allows scaling values to be determined automatically: with the

motor off, the program will request that the output be moved to its minimum and maximum, and the

resulting values will be recorded.

Input analog to digital conversion

In analog mode, the analog to digital conversion panel lets you specify the number of analog samples

to average together each PID cycle, which determines the precision and speed of the analog to digital

conversions. The indicator labeled “PID period exceeded” at the top of the window is provided as a

warning for when the analog sampling takes more time than the specified PID period.

Selecting the Detect disconnect with AUX option activates an extra feature that allows the jrk to detect

if the FB pin becomes disconnected from the analog voltage input device or shorted to 5 V. This option

is intended for use in analog voltage feedback mode with a potentiometer connected between AUX

and ground. When the option is selected, the jrk will periodically drive the AUX pin low, verifying that

this results in a 0 V signal at FB. If the line does not respond as expected the Feedback disconnect

error will occur.

3.d. PID Options

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 22 of 55

The PID tab of the Jrk Configuration Utility

The PID tab of the jrk configuration utility controls the central calculation performed by the jrk:

duty cycle target =(Proportional coefficient) × error

+ (Integral coefficient) × integral

+ (Derivative coefficient) × derivative

The integral is computed as the sum of the error over all PID cycles, and the derivative is the current

error minus the previous error. The error itself is the difference of the scaled feedback and the target

(error = scaled feedback – target). Each of the PID coefficients is specified as an integer value divided

by a power of two. The proportional and derivative coefficients can have values from 0.00003 to 1024,

and any value above 0.0152 can be approximated within 0.5%. To get the closest approximation to a

desired value, type the number into the box after the equal sign, and the best possible numerator and

denominator will be computed. In the case of the integral coefficient, the range of the denominator is

actually 23 to 218; this is a more useful range, since the integral is usually much larger than the error

or derivative.

The PID period can be adjusted here; this sets the rate at which the jrk runs through all of its

calculations. Note that a higher PID period will result in a more slowly changing integral and a higher

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 23 of 55

https://a.pololu-files.com/picture/0J1731.1200.png?48159320f7ff1c28258ddb958bec9f8f
https://a.pololu-files.com/picture/0J1731.1200.png?48159320f7ff1c28258ddb958bec9f8f

derivative, so that the two corresponding PID constants might need to be adjusted whenever the PID

period is changed.

Preventing integral wind-up

Three options are provided for limiting “integral wind-up”, which is the uncontrolled growth of the

integral when the feedback system is temporarily unable to keep the error small. This might happen,

for example, when the target is changing quickly. One option is the integral limit, a value from 0 to

32767 that simply limits the magnitude of the integral. Note that the maximum value of the integral

term can be computed as the integral coefficient times the integral limit: if this is very small compared

to 600 (maximum duty cycle), the integral term will have at most a very small effect on the duty cycle.

Another option causes the integral to reset to 0 when the proportional term exceeds the maximum duty

cycle parameter. For example, if this option is selected when the proportional coefficient is 15 and the

maximum duty cycle is 300, the integral will reset whenever the error is larger than 20.

Additionally the Feedback dead zone option sets the duty cycle target to zero and resets the integral

whenever the magnitude of the error is smaller than this amount. This is useful for preventing the

motor from driving when the target is very close to scaled feedback. The feedback dead zone uses

hysteresis to keep the system from simply riding the edge of the dead zone; once in the dead zone,

the duty cycle and integral will remain zero until the magnitude of the error exceeds twice this value.

3.e. Motor Options

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 24 of 55

The Motor tab of the Jrk Configuration Utility

The Motor tab of the jrk configuration utility controls the PWM [http://en.wikipedia.org/wiki/Pulse-

width_modulation] signal applied to the motor, including all limits that are applied when converting duty

cycle target to duty cycle.

The jrk’s PWM duty cycle has a range of -600 to 600, where -600 is full reverse and 600 is full forward.

“Forward” and “reverse” should be consistent with the scaled feedback values, so that when the duty

cycle is positive, the motor spins in a direction that increases the scaled feedback. By default, full

forward (+600) means motor output A = VIN and B = 0 V, while full reverse (-600) means A = 0 V and

B = VIN. When checked, the Invert motor direction option switches these definitions so that full forward

(+600) means A = 0 V and B = VIN, while full reverse (-600) means A = VIN and B = 0 V.

Detect motor direction

To automatically detect whether the motor is inverted or not, click “Detect Motor Direction”. This will

attempt to drive the motor with a gradually increasing duty cycle until it starts to move, as measured

by the feedback. Make sure to configure feedback correctly before clicking this button, or the results

will be meaningless. It is also recommended to set up low maximum duty cycles and currents, and

set the Motor drive error, Feedback disconnect, and Max. current exceeded errors to be “Enabled and

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 25 of 55

https://a.pololu-files.com/picture/0J1732.1200.png?fb7dc6e4ebd7b736a1ce390de4f5ac2f
https://a.pololu-files.com/picture/0J1732.1200.png?fb7dc6e4ebd7b736a1ce390de4f5ac2f
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

latched”, so that any potentially damaging conditions encountered during this test will cause the jrk to

turn off the motor.

PWM frequency

The jrk is capable of both 20 kHz and 5 kHz PWM. The 20 kHz PWM frequency is ultrasonic and can

thus eliminate audible PWM-induced motor humming, which makes this frequency desirable for typical

applications.

However, a higher PWM frequency means greater power loss due to switching, which could make a

5 kHz PWM frequency a better choice for certain applications.

Additionally, the 5 kHz PWM frequency allows for finer control at duty cycles approaching 0% or

100% (±600). This is because the timing characteristics of the jrk motor drivers make it so that very

short PWM pulses (either low or high) have no effect on the output voltage. This limitation is more

pronounced on the jrk 21v3, in which pulses that are shorter than approximately 4 μs have no effect

on the output voltage. Therefore, at 20 kHz, the jrk 21v3 with a duty cycle less than 8% will effectively

have a duty cycle of 0% (braking), while a duty cycle greater than 92% will be the same as a duty cycle

of 100% (the jrk 12v12 can typically go a bit closer to 0% and 100%). At 5 kHz, the effect is smaller

by a factor of four: a duty cycle less than 2% will be the same as a duty cycle of 0% (braking) while a

duty cycle greater than 98% will be the same as a duty cycle of 100%.

Limits

Various limits may be applied to the duty cycle, each of which can be configured separately for forward

(positive duty cycle) and reverse (negative duty cycle) if the “Asymmetric” option is checked:

Max. duty cycle limits the duty cycle itself.

Max. acceleration limits the amount that the duty cycle can change by in a single PID period. For

example, if there is an acceleration limit of 10 in both directions, and the current duty cycle is 300, then

the duty cycle in the next PID period is limited to be within -10 to 310.

Max. current causes the jrk to measure the motor driver current and adjust the duty cycle as necessary

to limit it the specified value. The current is reported as a number from 0 to 255 that is multiplied by

the Current calibration to get a number in mA, so increasing the current calibration value will increase

the measured value. For accurate current limiting, acceleration should be limited; otherwise the duty

cycle will tend to oscillate when the maximum current is exceeded.

Brake duration is a feature that is most useful for large motors with high-inertia loads used with

frequency feedback or speed control mode (no feedback). If this option is used, the jrk will

automatically keep the motor at a duty cycle of 0 for the specified time before switching directions.

The “forward” setting refers to switching from forward to reverse, and the “reverse” setting refers to

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 26 of 55

switching from reverse to forward.

Max. duty cycle while feedback is out of range is an option to limit possible damage to systems by

reducing the maximum duty cycle whenever the feedback value is beyond the absolute minimum and

maximum values. This can be used, for example, to slowly bring a system back into its valid range of

operation when it is dangerously near a limit. The Feedback disconnect error should be disabled when

this option is used.

When motor is off

When the motor is off because of an error condition or an explicit Motor Off command, there are two

options for the state of the motor driver: brake (A and B both connected to GND) and coast (A and B

floating).

You can familiarize yourself with motor coasting and braking using nothing more than a motor. First,

with your motor disconnected from anything, try rotating the output shaft and note how easily it turns.

Then hold the two motor leads together and try rotating the output shaft again. You should notice

significantly more turning resistance while the leads are shorted together.

The jrk 21v3 PWMs the motor outputs between driving and braking, and a duty cycle of zero is the

same as braking.

The jrk 12v12 PWMs the motor outputs between driving and coasting when the duty cycle is non-zero.

As of firmware version 1.4, the behavior of the jrk 12v12 when the duty cycle is zero depends

on the “When motor is off” configuration option. In previous versions, at a duty cycle of 0,

the jrk 12v12 would brake the motor in one direction but let it coast in the other direction.

3.f. Error Response Options

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 27 of 55

The Errors tab of the Jrk Configuration Utility

There are several errors that can stop the jrk from driving its motor. For information about what each

error means, see Section 4.f.

The jrk’s response to the different errors can be configured. Each error has up to three different

available settings.

• Disabled: The jrk will ignore this error. You can still determine whether the error is occurring

by checking the “Occurrence count” column in the configuration utility, or by using the Get

Error Flags Occurred serial command (Section 4.f).

• Enabled: When this error happens, the jrk will turn the motor off. When the error stops

happening, the motor can restart.

• Enabled and Latched: When this error happens, the jrk will turn the motor off and set the

Awaiting Command error bit. The jrk will not drive the motor again until it receives one of the

serial set target commands. The motor can also be restarted from the configuration utility.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 28 of 55

https://a.pololu-files.com/picture/0J1733.1200.png?777f7ab4746dea583502df6ebfade7a2
https://a.pololu-files.com/picture/0J1733.1200.png?777f7ab4746dea583502df6ebfade7a2

3.g. The Plots Window

The Plots window of the configuration utility displays real-time data from the jrk, scrolling from right to

left. To access this window, select “Plots” from the Window menu, or click on the small plot displayed in

the upper-right corner of the main window. All of the variables discussed in Section 1.c are available.

Each variable can be independently scaled to a useful range. For example, the Error can be from

-4095 to +4095, but for well-tuned feedback systems, it will usually have a much smaller value, so

setting the range to ±100 might provide a more useful plot.

The plot shows all variables on a scale from -100% to 100%, where 100% represents the high end

of the variable’s range. The percentage range displayed on the plot can also be adjusted, using the

Range settings at the bottom of the plot window.

By default, the plot shows data from the past 5 seconds, with the most recent values on the right and

the older values on the left. The time scale of the plot can be shortened using the Time (s) setting at

the bottom of the window.

The color of each variable in the graph can be selected by double clicking on the colored box next to

the variable’s name.

Each variable can be independently shown or hidden using the checkbox next to the variable’s name.

Here is an example showing all variables plotted simultaneously:

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 29 of 55

3.h. Upgrading Firmware

The jrk has field-upgradeable firmware that can be easily updated with bug fixes or new features.

You can determine the version of your jrk’s firmware by running the configuration utility (Section 3.a),

connecting to a jrk, and looking at the firmware version number which is displayed in the upper left

corner below the “Connected to” dropdown box.

Version 1.4 of the firmware for the jrk 12v12 extends the “When motor is off” parameter so

that it now affects the behavior of the jrk whenever the duty cycle is 0. Previously, at a duty

cycle of 0, the jrk 12v12 would brake the motor in one direction but let it coast in the other

direction. Now the default behavior is to brake in both directions, but you can configure it

to coast instead. Firmware version 1.4 also makes the jrk 12v12 brake low (connect both A

and B to GND) instead of braking high. All jrk 12v12s manufactured after August 24, 2012

ship with firmware version 1.4.

The latest version of the jrk 21v3 firmware available is Version 1.3. Do not attempt to load

jrk 12v12 firmware onto a jrk 21v3, or vice-versa.

To upgrade your jrk’s firmware, follow these steps:

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 30 of 55

https://a.pololu-files.com/picture/0J1749.1200.png?34f9d694bce687106e387746a9c9a42e
https://a.pololu-files.com/picture/0J1749.1200.png?34f9d694bce687106e387746a9c9a42e

1. Save the settings stored on your jrk using the “Save settings file…” option in the File menu.

All of your settings will be reset to default values during the firmware upgrade.

2. Download the latest version of the firmware for your motor controller here:

◦ Firmware version 1.3 for the jrk 21v3 (umc01a) [https://www.pololu.com/file/0J223/

umc01a_v1.3.pgm] (35k pgm) — released 2009-08-25.

◦ Firmware version 1.4 for the jrk 12v12 (umc02a) [https://www.pololu.com/file/0J573/

umc02a_v1.4.pgm] (34k pgm) — released 2012-08-15.

3. Connect your jrk to a computer running Windows using a USB cable.

4. Run the Pololu Jrk Configuration Utility. If there is only one jrk connected to your computer,

the configuration utility will automatically connect to it. If there are multiple jrks connected to

your computer, you will have to use the “Connected to” dropdown box to select which jrk you

want to connect to.

5. In the File menu, select “Upgrade Firmware…”. You will see a message asking you if you are

sure you want to proceed: click Yes. The jrk will now disconnect itself from your computer and

reappear as a new device called “Pololu umc01a Bootloader” or “Pololu umc02a Bootloader”.

◦ Windows 10, Windows 8, Windows 7, and Vista: the driver for the bootloader will

automatically be installed.

◦ Windows XP: follow steps 6-8 from Section 3.a to get the driver working.

6. Once the bootloader’s drivers are properly installed, the green LED should be blinking in a

double heart-beat pattern, and there should be an entry for the bootloader in the “Ports (COM

& LPT)” list of your computer’s Device Manager.

7. Go to the window titled “Firmware Upgrade” that the Jrk Configuration Utility opened. Click

the “Browse…” button and select the firmware file you downloaded.

8. Select the COM port corresponding to the bootloader. If you don’t know which COM port to

select, go to the Device Manager and look in the “Ports (COM & LPT)” section.

9. Click the “Program” button. You will see a message warning you that your jrk’s firmware is

about to be erased and asking you if you are sure you want to proceed: click Yes.

10. It will take a few seconds to erase the jrk’s existing firmware and load the new firmware. Do

not disconnect the jrk during the upgrade.

11. Once the upgrade is complete, the Firmware Upgrade window will close, the jrk will

disconnect from your computer once again, and it will reappear as it was before. If there is

only one Jrk plugged in to your computer, the Pololu Jrk Configuration Utility will connect to

it. Check the firmware version number and make sure that it now indicates the latest version

of the firmware.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 31 of 55

https://www.pololu.com/file/0J223/umc01a_v1.3.pgm
https://www.pololu.com/file/0J223/umc01a_v1.3.pgm
https://www.pololu.com/file/0J573/umc02a_v1.4.pgm
https://www.pololu.com/file/0J573/umc02a_v1.4.pgm

If you run into problems during a firmware upgrade, please contact us [https://www.pololu.com/contact]

for assistance.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

3. Configuring the Motor Controller Page 32 of 55

https://www.pololu.com/contact

4. Using the Serial Interface

4.a. Serial Modes

The jrk has three different serial interfaces. First, it has the RX and TX lines. The jrk can send bytes

on the TX line. If the jrk is in serial input mode, the RX line can be used to receive non-inverted, TTL

(0 – 5 V) serial bytes (Section 4.b). If the jrk is not in serial input mode, it can not receive bytes on

RX because the line is used for analog voltage or pulse width measurement. Secondly, the jrk shows

up as two virtual serial ports on a computer if it is connected via USB. One of these ports is called the

Command Port and the other is called the TTL port. You can determine the COM port numbers of

these ports by looking in your computer’s Device Manager. See Section 3.a for information.

The jrk can be configured to be in one of three basic serial modes:

USB Dual Port

The USB Dual Port serial mode.

In this mode, the Command Port can be used to send commands to the jrk and receive responses

from it. The baud rate you set in your terminal program when opening the Command Port is irrelevant.

The TTL Port can be used to send bytes on the TX line and (if the jrk is in serial input mode) receive

bytes on the RX line. The baud rate you set in your terminal program when opening the TTL Port

determines the baud rate used to receive and send bytes on RX and TX. This allows your computer to

control the jrk and simultaneously use the RX and TX lines as a general purpose serial port that can

communicate with other types of TTL serial devices.

USB Chained

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 33 of 55

The USB Chained serial mode.

In this mode, the Command Port is used to both transmit bytes on the TX line and send commands

to the jrk. The jrk’s responses to those commands will be sent to the Command Port but not the TX

line. If the input mode is serial, bytes received on the RX line will be sent to the Command Port but will

not be interpreted as command bytes by the jrk. The baud rate you set in your terminal program when

opening the Command Port determines the baud rate used to receive and send bytes on RX and TX.

The TTL Port is not used. This mode allows a single COM port on your computer to control multiple

jrks, or a jrk and other devices that have a compatible protocol.

UART

The UART serial mode.

In this mode, the TX and RX lines can be used to send commands to the jrk and receive responses

from it. Any byte received on RX will be sent to the Command Port, but bytes sent from the Command

Port will be ignored. The TTL Port is not used. The baud rate on TX and RX can either be automatically

detected by the jrk when a 0xAA byte is received on RX, or it can be set to a fixed value ahead of time.

This mode is only available when the input mode is serial. This mode allows you to control the jrk (and

send bytes to a serial program on the computer) using a microcontroller or other TTL serial device.

4.b. TTL Serial

If the jrk is in serial input mode, then its serial receive line, RX, can receive bytes when connected to

a logic-level (0 to 4.0–5 V, or “TTL”), non-inverted serial signal. The bytes sent to the jrk on RX can be

commands to the jrk or an arbitrary stream of data that the jrk passes on to a computer via the USB

port, depending on which Serial Mode the jrk is in (Section 4.a). The voltage on the RX pin should not

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 34 of 55

go below 0 V and should not exceed 5 V.

The jrk provides logic-level (0 to 5 V) serial output on its serial transmit line, TX. The bytes sent by the

jrk on TX can be responses to commands that request information or an arbitrary stream of data that

the jrk is receiving from a computer the USB port and passing on, depending on which Serial Mode

the jrk is in. If you aren’t interested in receiving TTL serial bytes from the jrk, you can leave the TX line

disconnected.

The serial interface is asynchronous, meaning that the sender and receiver each independently time

the serial bits. Asynchronous TTL serial is available as hardware modules called “UARTs” on many

microcontrollers. Asynchronous serial output can also be “bit-banged” by a standard digital output line

under software control.

The data format is 8 data bits, one stop bit, with no parity, which is often expressed as 8-N-1. The

diagram below depicts a typical asynchronous, non-inverted TTL serial byte:

Diagram of a non-inverted TTL serial byte.

A non-inverted TTL serial line has a default (non-active) state of high. A transmitted byte begins with

a single low “start bit”, followed by the bits of the byte, least-significant bit (LSB) first. Logical ones are

transmitted as high (Vcc) and logical zeros are transmitted as low (0 V), which is why this format is

referred to as “non-inverted” serial. The byte is terminated by a “stop bit”, which is the line going high

for at least one bit time. Because each byte requires a start bit, 8 data bits, and a stop bit, each byte

takes 10 bit times to transmit, so the fastest possible data rate in bytes per second is the baud rate

divided by ten. At the jrk’s maximum baud rate of 115,200 bits per second, the maximum realizable

data rate, with a start bit coming immediately after the preceding byte’s stop bit, is 11,520 bytes per

second.

Whenever connecting devices, remember to wire the grounds together, and ensure that

each device is properly powered. Unpowered devices with a TTL serial port can turn on

or partially on, drawing power from the serial line, which means that extra care must be

taken when turning power off and on to reset the devices.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 35 of 55

4.c. Command Protocols

You can control the jrk by issuing serial commands.

If your jrk’s input mode is Serial and its Serial Mode is “UART, detect baud rate”, you must first send

it the byte 0xAA (170 in decimal) on the RX line (so it can detect the baud rate) before sending it any

commands.

The jrk serial command protocol is fairly straightforward. Communication is achieved by sending

command packets consisting of a single command byte followed by any data bytes that command

requires. Command bytes always have their most significant bits set (i.e. they range from 128–255,

or 0x80–0xFF in hex) while data bytes always have their most significant bits cleared (i.e. they range

from 0–127, or 0x00–0x7F in hex). This means that each data byte can only transmit seven bits of

information.

The jrk responds to two sub-protocols:

Compact Protocol

This is the simpler and more compact of the two protocols; it is the protocol you should use if your jrk

is the only device connected to your serial line. The jrk compact protocol command packet is simply:

command byte (with MSB set), any necessary data bytes

For example, if we want to set the target to 4080 (the highest value achievable using the low resolution

Set Target commands), we could send the following byte sequence:

in hex: 0xE1, 0x7F

in decimal: 225, 127

The byte 0xE1 is the Set Target Low Resolution Forward command, and the data byte contains the

motor speed.

Note that the Set Target High Resolution command uses some of the bits in the command byte

to represent data, so there is not a one-to-one correspondence between command bytes and

commands.

Pololu Protocol

This protocol is compatible with the serial protocol used by our other serial motor and servo controllers.

As such, you can daisy-chain a jrk on a single serial line along with our other serial controllers

(including additional jrks) and, using this protocol, send commands specifically to the desired jrk

without confusing the other devices on the line.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 36 of 55

The Pololu protocol is to transmit 0xAA (170 in decimal) as the first (command) byte, followed by

a Device Number data byte. The default Device Number for the jrk is 11, but this is a configuration

parameter you can change. Any jrk on the line whose device number matches the specified device

number accepts the command that follows; all other Pololu devices ignore the command. The

remaining bytes in the command packet are the same as the compact protocol command packet you

would send, with one key difference: the compact protocol command byte is now a data byte for the

command 0xAA and hence must have its most significant bit cleared. Therefore, the command

packet is:

0xAA, device number byte, command byte with MSB cleared, any necessary data

bytes

For example, if we want to set the target to 4080 for a jrk with device number 11, we could send the

following byte sequence:

in hex: 0xAA, 0x0B, 0x61, 0x7F

in decimal: 170, 11, 97, 127

Note that 0x61 is the command 0xE1 with its most significant bit cleared.

The jrk responds to both the Pololu and Compact protocols on the fly; you do not need to use a

configuration parameter to identify which protocol you are using.

4.d. Cyclic Redundancy Check (CRC) Error Detection

For certain applications, verifying the integrity of the data you are sending and receiving can be very

important. Because of this, the jrk has optional 7-bit cyclic redundancy checking, which is similar to a

checksum but more robust as it can detect errors that would not affect a checksum, such as an extra

zero byte or bytes out of order.

Cyclic redundancy checking can be enabled by checking the “Enable CRC” checkbox in the

configuration utility. In CRC mode, the jrk expects an extra byte to be added onto the end of every

command packet. The most-significant bit of this byte must be cleared, and the seven least-significant

bits must be the 7-bit CRC for that packet. If this CRC byte is incorrect, the jrk will generate its Serial

CRC error and ignore the command. The jrk does not append a CRC byte to the data it transmits in

response to serial commands.

A detailed account of how cyclic redundancy checking works is beyond the scope of this document, but

you can find a wealth of information using Wikipedia [http://en.wikipedia.org/wiki/Cyclic_redundancy_check].

The CRC computation is basically a carryless long division of a CRC “polynomial”, 0x91, into your

message (expressed as a continuous stream of bits), where all you care about is the remainder. The

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 37 of 55

http://en.wikipedia.org/wiki/Cyclic_redundancy_check

jrk uses CRC-7, which means it uses an 8-bit polynomial and, as a result, produces a 7-bit remainder.

This remainder is the lower 7 bits of the CRC byte you tack onto the end of your command packets.

The CRC implemented on the jrk is the same as the one on the qik [https://www.pololu.com/

product/1110] motor controller but differs from that on the TReX [https://www.pololu.com/

product/777] motor controller. Instead of being done MSB first, the computation is

performed LSB first to match the order in which the bits are transmitted over the serial

line. In standard binary notation, the number 0x91 is written as 10010001. However, the

bits are transmitted in this order: 1, 0, 0, 0, 1, 0, 0, 1, so we will write it as 10001001 to

carry out the computation below.

The CRC-7 algorithm is as follows:

1. Express your 8-bit CRC-7 polynomial and message in binary, LSB first. The polynomial 0x91

is written as 10001001.

2. Add 7 zeros to the end of your message.

3. Write your CRC-7 polynomial underneath the message so that the LSB of your polynomial is

directly below the LSB of your message.

4. If the LSB of your CRC-7 is aligned under a 1, XOR the CRC-7 with the message to get a

new message; if the LSB of your CRC-7 is aligned under a 0, do nothing.

5. Shift your CRC-7 right one bit. If all 8 bits of your CRC-7 polynomial still line up underneath

message bits, go back to step 4.

6. What’s left of your message is now your CRC-7 result (transmit these seven bits as your CRC

byte when talking to the jrk with CRC enabled).

If you have never encountered CRCs before, this probably sounds a lot more complicated than it really

is. The following example shows that the CRC-7 calculation is not that difficult. For the example, we

will use a two-byte sequence: 0x83, 0x01.

Steps 1 & 2 (write as binary, add 7 zeros to the end of the message):

CRC-7 Polynomial = [1 0 0 0 1 0 0 1]
message = [1 1 0 0 0 0 0 1] [1 0 0 0 0 0 0 0] 0 0 0 0 0 0 0

Steps 3, 4, & 5:

1 0 0 0 1 0 0 1) 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XOR 1 0 0 0 1 0 0 1 | | | | | | | | | | | | | | |

--------------- | | | | | | | | | | | | | | |
1 0 0 1 0 0 0 1 | | | | | | | | | | | | | |

shift ----> 1 0 0 0 1 0 0 1 | | | | | | | | | | | | | |
_______________ | | | | | | | | | | | | | |

1 1 0 0 0 0 0 0 | | | | | | | | | | |
1 0 0 0 1 0 0 1 | | | | | | | | | | |

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 38 of 55

https://www.pololu.com/product/1110
https://www.pololu.com/product/1110
https://www.pololu.com/product/777
https://www.pololu.com/product/777

_______________ | | | | | | | | | | |
1 0 0 1 0 0 1 0 | | | | | | | | | |
1 0 0 0 1 0 0 1 | | | | | | | | | |
_______________ | | | | | | | | | |

1 1 0 1 1 0 0 0 | | | | | | |
1 0 0 0 1 0 0 1 | | | | | | |
_______________ | | | | | | |

1 0 1 0 0 0 1 0 | | | | | |
1 0 0 0 1 0 0 1 | | | | | |
_______________ | | | | | |

1 0 1 0 1 1 0 0 | | | |
1 0 0 0 1 0 0 1 | | | |
_______________ | | | |

1 0 0 1 0 1 0 0 | |
1 0 0 0 1 0 0 1 | |
_______________ | |

1 1 1 0 1 0 0 = 0x17

So the full command packet we would send with CRC enabled is: 0x83, 0x01, 0x17.

4.e. Motor Control Commands

The jrk has several serial commands for turning the motor on and off and setting the target. These

commands are mainly intended to be used in serial input mode, but they can be used in any input

mode to turn the motor on or off from a computer.

Motor Off

Compact protocol: 0xFF

Pololu protocol: 0xAA, device number, 0x7F

This command will turn the motor off by setting the Awaiting Command error bit. The jrk will not restart

the motor until it receives a Set Target command. The jrk can be configured to either brake or coast

while the motor is off (Section 3.e).

Set Target High Resolution

Compact protocol, binary: 110LLLLL, 0HHHHHHH

Compact protocol, hex: 0xC0 + target low 5 bits, target high 7 bits

Pololu protocol, binary: 10101010, device number, 010LLLLL, 0HHHHHHH

Pololu protocol, hex: 0xAA, device number, 0x40 + target low 5 bits, target high 7 bits

(where target is the 12-bit number HHHHHHHLLLLL)

This command clears the Awaiting Command error bit and (if Input Mode is Serial) lets you set the

12-bit target to any of its allowed values (0–4095). The meaning of the target depends on what

Feedback Mode the jrk is in (Section 3.c). The lower 5 bits of the command byte represent the lower

5 bits of the target, while the lower 7 bits of the data byte represent the upper 7 bits of the target.

For example, if you want to set the target to 3229 (110010011101 in binary), you could send the

following byte sequence:

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 39 of 55

in binary: 11011101, 01100100

in hex: 0xDD, 0x64

in decimal: 221, 100

Here is some example C code that will generate the correct serial bytes, given an integer “target” that

holds the desired target (0–4095) and an array called serialBytes:

Many motor control applications do not need 12 bits of target resolution. If you want a simpler and

lower-resolution set of commands for setting the target, you can use the Set Target Low Resolution

commands. Alternatively, you could use the Set Target High Resolution command with the lower 5 bits

of the target always zero: sending a 0xC0 byte followed by a data byte (0–127) will result in setting the

target to a value of 32 multiplied by the data byte.

Set Target Low Resolution Forward

Compact protocol: 0xE1, magnitude

Pololu protocol: 0xAA, device number, 0x61, magnitude

This command clears the Awaiting Command error bit and (if Input Mode is Serial) sets the target to a

value of 2048 or greater which is determined by the magnitude (0–127).

If the Feedback Mode is Analog or Tachometer, then the formula is

Target = 2048 + 16×magnitude.

If the Feedback Mode is None (speed control mode), then the formula is

Target = 2048 + (600/127)×magnitude.

This means that a magnitude of 127 will set the duty cycle target to full-speed forward (+600), while a

magnitude of zero will make the motor stop.

Set Target Low Resolution Reverse

Compact protocol: 0xE0, magnitude

Pololu protocol: 0xAA, device number, 0x60, magnitude

If magnitude is zero, then this command is equivalent to the Motor Off command above: the Awaiting

Command error bit will be set, so the jrk will turn the motor off until another Set Target command is

received.

1
2

serialBytes[0] = 0xC0 + (target & 0x1F); // Command byte holds the lower 5 bits of target.
serialBytes[1] = (target >> 5) & 0x7F; // Data byte holds the upper 7 bits of target.

?

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 40 of 55

Otherwise, this command clears the Awaiting Command error bit and (if Input Mode is Serial) sets the

target to a value less than 2048 which is determined by the magnitude (0–127).

If the Feedback Mode is Analog or Tachometer, then the formula is

Target = 2048 − 16×magnitude.

If the Feedback Mode is None (speed control mode), then the formula is

Target = 2048 − (600/127)×magnitude.

This means that a magnitude of 127 will set the duty cycle target to full-speed reverse (-600).

4.f. Error Reporting Commands

There are several errors that can stop the jrk from driving its motor. The jrk’s response to the different

errors can be configured (Section 3.f).

Both of the error reporting commands result in a two-byte serial response form the jrk. Each bit in

those two bytes represents a particular error. If the bit is 1, it means that the error occurred or is

occurring. If we call the least-significant bit 0, and the first byte transmitted contains bits 0-7, then the

correspondence between bits of the error bytes and errors are as follows:

• Bit 0: Awaiting command

If this bit is set, the jrk will not drive the motor until it receives a command that clears this bit.

Any version of the Set Target command will clear the error bit. A Set Target command can be

sent from the configuration utility, from a computer using the virtual Command Port (unless

the jrk is configured to receive commands on RX), or from the RX line if the jrk is configured

to receive commands on RX. This error occurs in Serial Input mode when the Jrk is powered

on.

• Bit 1: No power

This error occurs when the jrk is connected to USB, but it detects no motor power connected

to VIN and GND, so it can not drive the motor. If this error occurs, check your power supply

and power connections.

• Bit 2: Motor driver error

This error occurs when one of the motor driver’s fault conditions are triggered, and the motor

driver shuts down the motor and reports the error to the jrk’s microcontroller. This error also

occurs when the jrk is connected to USB and motor power becomes disconnected. When this

error occurs, the jrk will try to automatically recover from it by toggling the appropriate lines on

the motor driver. The jrk 21v3’s motor driver fault occurs on under-voltage, over-temperature,

or over-current conditions. The jrk 12v12’s motor driver fault occurs when it detects that motor

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 41 of 55

output A is shorted to ground or VIN.

• Bit 3: Input invalid (Pulse Width Input Mode only)

In Pulse Width Input Mode, the jrk will only update the input value if it has received four good

pulses in a row. For example, if the jrk receives five good pulses, a bad pulse, and then five

more good pulses, it will update the input value after pulses 4, 5, 10, and 11. This error occurs

if the jrk goes more than 120 ms without updating the input value. The jrk can recover from

the error by receiving four good pulses in a row. This error does not occur in Analog Input

Mode or Serial Input Mode.

• Bit 4: Input disconnect

This error occurs when the input is above the Absolute maximum or below the Absolute

minimum (these parameters can be set in the configuration utility). Additionally, when using

the Detect disconnect with AUX option in Analog Input Mode, the jrk periodically tests to see

whether the input potentiometer is disconnected and generates this error if it finds that it is

(Section 3.b).

• Bit 5: Feedback disconnect

This error occurs when the feedback is above the Absolute maximum or below the Absolute

minimum (these parameters can be set in the configuration utility). The absolute maximum

and absolute minimum can be set using the configuration utility. Additionally, when using the

Detect disconnect with AUX option in Analog Feedback Mode, the jrk periodically tests to see

whether the feedback potentiometer is disconnected and generates this error if it finds that it

is (Section 3.c).

• Bit 6: Maximum current exceeded

This error occurs when the motor current limit is exceeded. The limit can be set using the

configuration utility (Section 3.e).

• Bit 7: Serial signal error

A hardware-level error that occurs when a byte’s stop bit is not detected at the expected

place. This can occur if you are communicating at a baud rate that differs from the jrk’s baud

rate.

• Bit 8: Serial overrun

A hardware-level error that occurs when the UART receive buffer is full. This error should not

occur during normal operation.

• Bit 9: Serial RX buffer full

A firmware-level error that occurs when the firmware’s buffer for bytes received on the RX

line is full and a byte from RX has been lost as a result. This error should not occur during

normal operation.

• Bit 10: Serial CRC error

This error occurs when the jrk is running in CRC-enabled mode and the cyclic redundancy

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 42 of 55

check (CRC) byte at the end of the command packet does not match what the jrk has

computed as that packet’s CRC (Section 4.d). In such a case, the jrk ignores the command

packet and generates a CRC error.

• Bit 11: Serial protocol error

This error occurs when the jrk receives an incorrectly formatted or nonsensical command

packet. For example, if the command byte does not match a known command or an

unfinished command packet is interrupted by another command packet, this error occurs.

• Bit 12: Serial timeout error

When the serial timeout is enabled (Section 3.b), this error occurs whenever the timeout

period has elapsed without the jrk receiving any valid serial commands. This timeout error

can be used to shut down the motors in the event that serial communication between the jrk

and its controller is disrupted.

• Bits 13-15: Reserved

These bits do not represent any errors; they will always read as zeroes.

Get Error Flags Halting

Compact protocol: 0xB3

Pololu protocol: 0xAA, device number, 0x33

This command generates a two-byte serial response reporting which errors are currently stopping the

motor, and it clears the corresponding error bits (except for the Awaiting Command error bit). This

command is useful for determining why your motor is not turning, and for clearing any latched errors

that are enabled. This command will not report any errors that have been disabled in the configuration

utility, because those errors do not stop the motor.

This command is equivalent to reading the “Currently stopping motor?” column in the Errors tab of the

configuration utility, and then clicking the “Clear Errors” button.

If an error is stopping the motor (besides the Awaiting Command error bit), the jrk will turn the red LED

on and drive the ERR line high, and this command can be used to determine the cause of the error.

Get Error Flags Occurred

Compact protocol: 0xB5

Pololu protocol: 0xAA, device number, 0x35

This command generates a two-byte serial response reporting which errors have occurred since the

last time the Get Error Flags Occurred command was received. Unlike the Get Error Flags Halting

command, this command has no effect on the motor.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 43 of 55

Note: If the jrk is connected to the configuration utility, then the Get Error Flags Occurred

command will give unreliable responses, because the configuration utility runs this

command regularly. This command will report all the errors that have occurred since the

last time the Get Error Flags Occurred command was received, regardless of whether

that last command came from the configuration utility, from your microcontroller, or from

the jrk’s virtual Command Port.

4.g. Variable Reading Commands

Compact protocol: read variable command byte

Pololu protocol: 0xAA, device number, read variable command byte with MSB clear

The jrk has several serial commands for reading its variables. Most of the variables are two bytes long.

For each of those variables, three variable reading commands are provided:

• Two bytes: These commands will result in a two-byte serial response from the jrk containing

both bytes of the variable. All variables are little endian, so the first byte transmitted will be the

least-significant byte, and the second byte transmitted will be the most-significant byte. For

variables that can have negative values, the two’s complement system is used (a response

of 0xFE, 0xFF means -2).

• Low byte: These commands will result in a one-byte serial response from the jrk containing

just the least-significant byte of the variable.

• High byte: These commands will result in a one-byte serial response from the jrk containing

just the most-significant byte of the variable.

The command bytes are listed in the table below.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 44 of 55

Variable Range
Read Variable Command Byte

Two bytes Low byte High byte

Input 0 to 4095 0xA1 0x81 0x82

Target 0 to 4095 0xA3 0x83 0x84

Feedback 0 to 4095 0xA5 0x85 0x86

Scaled feedback 0 to 4095 0xA7 0x87 0x88

Error sum (integral) -32,768 to 32,767 0xA9 0x89 0x8A

Duty cycle target -32,768 to 32,767 0xAB 0x8B 0x8C

Duty cycle -600 to 600 0xAD 0x8D 0x8E

Current 0 to 255 0x8F

PID period count 0 to 65535 0xB1 0x91 0x92

The meaning of the variables is described below:

• Input: The input is the raw, un-scaled input value, representing a measurement taken by the

jrk of the input to the system. In serial input mode, the input is equal to the target, which

can be set to any value 0–4095 using serial commands. In analog input mode, the input

is a measurement of the voltage on the RX pin, where 0 is 0 V and 4092 is 5 V. In pulse

width input mode, the input is the duration of the last pulse measured, in units of 2/3 μs. See

Section 3.b for more information.

• Target: In serial input mode, the target is set directly with serial commands. In the other input

modes, the target is computed by scaling the input. The scaling can be configured in the

“Scaling” box of the Input tab in the configuration utility.

• Feedback: The feedback is the raw, un-scaled feedback value, representing a measurement

taken by the jrk of the output of the system. In analog feedback mode, the feedback is a

measurement of the voltage on the FB pin, where 0 is 0 V and 4092 is 5 V. In no feedback

mode (speed control mode), the feedback is always zero.

• Scaled feedback: The scaled value of feedback. The feedback scaling can be configured in

the “Scaling” box of the Feedback tab in the configuration utility.

• Current: The value of this variable is proportional to the current running through the motor:

on the jrk 21v3, a value of 1 nominally represents 38 mA of current in the motor, while on the

jrk 12v12 a value of 1 nominally represents 149 mA of current in the motor . However, the

circuitry on the motor driver chips varies between different units, and they can vary depending

on which direction the motor is driving, so these calibration values will not always be right for

every jrk. The value of this variable will always be zero unless a current limit is enabled. See

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 45 of 55

Section 3.e for more information about current measurement and calibration.

• Error sum (integral): Every PID period, the error (scaled feedback minus target) is added

to the error sum. The error sum gets reset to zero whenever the jrk is not driving the motor,

and can optionally be reset whenever the proportional term of the PID calculation exceeds

the maximum duty cycle. There is also a configurable integral limit that the integral can not

exceed.

• Duty cycle target: Represents the duty cycle that the jrk is trying to achieve. A value of -600

or less means full speed reverse, while a value of 600 or more means full speed forward. A

value of 0 means braking. In no feedback mode (speed control mode), the duty cycle target

is the target minus 2048. In other feedback modes, the duty cycle target is the sum of the

proportional, integral, and derivative terms of the PID algorithm.

• Duty cycle: Represents the duty cycle that the jrk is driving the motor with. A value of -600

or less means full speed reverse, while a value of 600 or more means full speed forward.

A value of 0 means braking. The absolute value of the duty cycle will always be less than

the absolute value of the duty cycle target. The duty cycle is different from the duty cycle

target because it takes in to account all of the jrk’s configurable limits: maximum acceleration,

maximum duty cycle, maximum current, and also brake duration (Section 3.e).

• PID period count: This is the number of PID periods that have elapsed. It resets to 0 after

reaching 65535. The duration of the PID period can be configured (Section 3.d).

Note: All command bytes from 0x81 to 0xBF that are not listed in this section or Section

4.f are undocumented variable reading commands that will result in a serial response

from the jrk and not generate a serial protocol error. These commands are not useful,

but they are not harmful.

4.h. Daisy-Chaining

This section is a guide to integrating the jrk in to a project that has multiple TTL serial devices that use

the Pololu Protocol or some compatible protocol. This section contains no new information about the

jrk: all of the information in this section can be deduced from the definitions of the three serial modes

(Section 4.a) and the Pololu Protocol (Section 4.c).

First of all, assign each device in the project a different device number so that they can be individually

addressed by Pololu Protocol serial commands. For the jrk, this can be done in the Input tab of the

configuration utility. The following diagram shows how to connect one master and many slave devices

together into a chain. Each of the devices may be a jrk or any other device compatible with the Pololu

Protocol, such as a qik [https://www.pololu.com/product/1110], servo controller [https://www.pololu.com/

category/12/rc-servo-controllers], or a microcontroller.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 46 of 55

https://www.pololu.com/product/1110
https://www.pololu.com/category/12/rc-servo-controllers
https://www.pololu.com/category/12/rc-servo-controllers

Daisy chaining serial devices using the Pololu
protocol. An optional AND gate is used to join

multiple TX lines.

Using a PC and a jrk together as the master device

The jrk can enable a personal computer to be the master device. The jrk must be connected to a PC

with a USB cable and configured to be in either USB Dual Port or USB Chained serial mode. Serial

input mode must be used to receive responses from slave devices (if you do not need to receive

reponses, you may use other input modes). In USB Dual Port mode, the Command Port on the PC is

used for sending commands directly to the jrk, and the TTL Port on the PC is used to send commands

to all of the slave devices. In the USB Chained mode, only the Command Port is used on the PC, to

communicate with the jrk and all of the slave devices. Select the mode that is most convenient for your

application or easiest to implement in your programming language.

Using a jrk as a slave device

The jrk can act as a slave device when configured to be in the UART serial mode and Serial input

mode. In this mode, commands are received on the RX line, and responses are sent on the TX line.

A USB connection to a PC is not required, though an RX-only Comand Port is available on the PC for

debugging or other purposes.

Connections

Connect the TX line of the master device to the RX lines of all of the slave devices. Commands sent

by the master will then be received by all slaves.

Receiving serial responses from one the slave devices on the PC can be achieved by connecting the

TX line of that slave device to the RX line of the jrk.

Receiving serial responses from multiple slave devices is more complicated. Each device should only

transmit when requested, so if each device is addressed separately, multiple devices will not transmit

simultaneously. However, the TX outputs are driven high when not sending data, so they cannot simply

be wired together. Instead, you can use an AND gate, as shown in the diagram, to combine the

signals. Note that in many cases receiving responses is not necessary, and the TX lines can be left

unconnected.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 47 of 55

If there are multiple slave jrks, you can connect all of the jrks’ ERR lines to a single input on a

microcontroller to monitor the error state.

Whenever connecting devices, remember to wire the grounds together, and ensure that

each device is properly powered. Unpowered devices with a TTL serial port can turn on

or partially on, drawing power from the serial line, which means that extra care must be

taken when turning power off and on to reset the devices.

Sending commands

The Pololu Protocol should be used when multiple Pololu devices are receiving the same serial data.

This allows the devices to be individually addressed, and it allows responses to be sent without

collisions.

If the devices are configured to detect the baud rate, then when you issue your first Pololu Protocol

command, the devices can automatically detect the baud from the initial 0xAA byte.

Some older Pololu devices use 0x80 as an initial command byte. If you want to chain these together

with devices expecting 0xAA, you should first transmit the byte 0x80 so that these devices can

automatically detect the baud rate, and only then should you send the byte 0xAA so that the jrk can

detect the baud rate. Once all devices have detected the baud rate, Pololu devices that expect a

leading command byte of 0x80 will ignore command packets that start with 0xAA, and jrks will ignore

command packets that start with 0x80.

4.i. Serial Example Code

4.i.1. Cross-platform C

The example C code below works on Windows, Linux, and Mac OS X 10.7 or later. It demonstrates

how to set the target of a jrk by sending a Set Target command to its Command Port, and how to read

variables from the jrk. The jrk’s input mode must be set to “Serial” and the serial mode must be “USB

Dual Port” for this code to work. You will also need to modify the line that specifies the name of the

COM port device.

This code will work in Windows if compiled with MinGW, but it does not work with

the Microsoft C compiler. For Windows-specific example code that works with either

compiler, see Section 4.i.2.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 48 of 55

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// Uses POSIX functions to send and receive data from a jrk.
// NOTE: The jrk's input mode must be "Serial".
// NOTE: The jrk's serial mode must be set to "USB Dual Port".
// NOTE: You must change the 'const char * device' line below.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>

#ifdef _WIN32
#define O_NOCTTY 0
#else
#include <termios.h>
#endif

// Reads a variable from the jrk.
// The 'command' argument must be one of the two-byte variable-reading
// commands documented in the "Variable Reading Commands" section of
// the jrk user's guide.
int jrkGetVariable(int fd, unsigned char command)
{
if(write(fd, &command, 1) == -1)
{
perror("error writing");
return -1;

}

unsigned char response[2];
if(read(fd,response,2) != 2)
{
perror("error reading");
return -1;

}

return response[0] + 256*response[1];
}

// Gets the value of the jrk's Feedback variable (0-4095).
int jrkGetFeedback(int fd)
{
return jrkGetVariable(fd, 0xA5);

}

// Gets the value of the jrk's Target variable (0-4095).
int jrkGetTarget(int fd)
{
return jrkGetVariable(fd, 0xA3);

}

// Sets the jrk's Target variable (0-4095).
int jrkSetTarget(int fd, unsigned short target)
{

unsigned char command[] = {0xC0 + (target & 0x1F), (target >> 5) & 0x7F};
if (write(fd, command, sizeof(command)) == -1)
{
perror("error writing");
return -1;

}
return 0;

}

int main()

?

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 49 of 55

4.i.2. Windows C

For example C code that shows how to control the jrk using its serial interface in Microsoft Windows,

download JrkSerialCWindows.zip [https://www.pololu.com/file/0J556/JrkSerialCWindows.zip] (4k zip). This

zip archive contains a Microsoft Visual C++ 2010 Express project that shows how to send a Set Target

command and also a Get Position command. It can also be compiled with MinGW. The jrk’s input

mode needs to be set to “Serial” and the serial mode needs to be set to “USB Dual Port” for this

code to work. This example is like the previous example except it does the serial communication using

Windows-specific functions like CreateFile and WriteFile. See the comments in the source code for

more details.

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

{
// Open the Jrk's virtual COM port.
const char * device = "\\\\.\\USBSER000"; // Windows, "\\\\.\\COM6" also works
//const char * device = "/dev/ttyACM0"; // Linux
//const char * device = "/dev/cu.usbmodem00000041"; // Mac OS X
int fd = open(device, O_RDWR | O_NOCTTY);
if (fd == -1)
{
perror(device);
return 1;

}

#ifndef _WIN32
struct termios options;
tcgetattr(fd, &options);
options.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
options.c_oflag &= ~(ONLCR | OCRNL);
tcsetattr(fd, TCSANOW, &options);

#endif

int feedback = jrkGetFeedback(fd);
printf("Current Feedback is %d.\n", feedback);

int target = jrkGetTarget(fd);
printf("Current Target is %d.\n", target);

int newTarget = (target < 2048) ? 3000 : 1000;
printf("Setting Target to %d.\n", newTarget);
jrkSetTarget(fd, newTarget);

close(fd);
return 0;

}

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

4. Using the Serial Interface Page 50 of 55

https://www.pololu.com/file/0J556/JrkSerialCWindows.zip

5. Setting Up Your System
The following step-by-step procedure is recommended for configuring a feedback system for use with

a jrk motor controller.

Connecting power and feedback

1. Connect your jrk to a PC with a USB cable and launch the configuration utility. The red LED

should be on.

2. Select the “Reset to default settings…” option from the File menu to load a safe set of

settings.

3. With your power supply off, make the power connections to VIN and GND.

4. Connect your feedback sensor to the FB input. If you are using a potentiometer as a feedback

sensor, use the AUX pin to power it, and enable Detect disconnect with AUX in the Feedback

tab.

5. Set the “No power”, “Motor driver error”, “Feedback disconnect”, and “Max. current exceeded”

errors on the Error tab to Enabled and latched. This should stop your system in case of any

major problem.

6. Click “Apply settings to device”.

7. Turn on power.

8. On the Error tab, click “Clear Errors” to remove the errors caused by turning off the power.

The red LED should now be off, and the yellow LED should be blinking slowly, indicating that the board

has power but that no target has been set. If the red LED is on, examine the Errors tab to determine

the source of the problem. Look at the value of Scaled Feedback displayed at the top of the window,

and verify that it changes if you manually adjust the feedback sensor.

Calibrating feedback

1. Select the correct value for Feedback mode.

2. Click “Learn…” on the Feedback tab. You will be prompted to turn the output to its minimum

and maximum positions, so that readings of the feedback sensor can be determined at each

extreme.

3. Examine the resulting values and adjust if desired. Your system will be safer if you set

Absolute Max. and Absolute Min. to values that the system can actually reach, so that if

motion takes it past those extremes, the jrk will automatically shut down (because of the

“Feedback disconnect” error.)

4. Click “Apply settings to device”.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

5. Setting Up Your System Page 51 of 55

5. Move the system to the middle of its range.

Setting motor limits

1. Set Max. duty cycle to a safe value, like 200.

2. Set Max. current to a safe value, like 500 mA. You want values that will turn the motor but not

give it enough power to do any damage if something goes wrong.

3. Set other limits as necessary.

4. Click “Apply settings to device”.

Connecting the motor

From this point on, be prepared to shut down the system by clicking “Stop motor”

or turning off your power supply if anything goes wrong and the limits and errors set

previously fail to stop the motor.

1. Turn off power.

2. Connect your motor wires to the jrk’s A and B motor outputs. If possible, connect them so

that positive voltage at A causes the motor to drive forward.

3. Turn on power.

Testing the motor

1. If possible, drive your motor with feedback disabled. To do this, make sure that the Feedback

mode is set to none and use the controls on the Input tab to apply different duty cycles.

Of course, this requires you to have a system that does not destroy itself when run without

feedback.

2. On the Error tab, click “Clear Errors” to remove the errors caused by turning off the power.

3. On the Motor tab, click the “Detect Motor Direction” button. This will apply some power to the

motor and measure the direction that feedback moves in response. If the motor is connected

“reversed” with respect to your feedback sensor, then Invert motor direction will be checked.

4. Click “Apply settings to device” to apply any changes.

Testing basic feedback

1. In the PID tab, choose a Proportional Coefficient of 1 and leave the other two constants at

zero. This will probably drive your motor at its maximum duty cycle, so make sure that this

and other motor parameters are configured correctly.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

5. Setting Up Your System Page 52 of 55

2. Click “Apply settings to device”.

3. Use the slider on the Input tab to send various input values to your jrk, and see how it

behaves.

If you did everything correctly, your feedback system should now be active, approximately following

the target value.

Tuning the PID constants

Tuning PID constants is a complicated process that can be approached in many different ways. Here

we will give a basic procedure that works for some systems, but you will probably want to try various

different methods for finding the best possible values. You will want to have the Plots window open,

displaying a nice view of the Error, Target, Scaled Feedback, and Duty Cycle. When setting the Integral

Coefficient, it will also be useful to look at the value of the Integral.

1. Increase your Max. duty cycle, Max. current, and other limits to reasonable values for high-

performance operation of your system.

2. Try increasing the Proportional Coefficient until you reach a point where the system becomes

unstable. Note that the stability could be different at different target positions, so try the full

range of motion when hunting for instability.

3. Decrease the value from the point of instability by about 40-50%. This is the first step of the

Ziegler-Nichols Method [http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method].

4. Note how close your system gets to an error of zero

using just the proportional term. You can use the integral

term to get it much lower: with the integral limit set at

1000, try increasing the Integral Coefficient until you see

a correction that brings the error closer to zero. In the

plot window shown here, you can see that the

proportional term gets the error down to about 10, then

the integral term builds up and, half a second later,

moves the motor just a bit, reducing the error to ±1.

5. For systems that have a lot of friction relative to external forces, enable a Feedback dead

zone so that the integral term doesn’t cause a slow oscillation very close to an error of zero.

Watch how the integral term and duty cycle build up over time to achieve this. The plot was

created with a dead zone of 4; without this, the integral term would have continued to build

up, but at a slower rate, after the first adjustment.

6. Enable the Reset integral when proportional term exceeds max duty cycle option to prevent

the integral from winding up during large motions. This is also shown in the plot: the integral

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

5. Setting Up Your System Page 53 of 55

http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
https://a.pololu-files.com/picture/0J1748.1200.png?f713197972ac05bff83379a5d80f07a3
https://a.pololu-files.com/picture/0J1748.1200.png?f713197972ac05bff83379a5d80f07a3

term does not start increasing until the error is close to zero.

7. Have your system take large steps (for example, by

clicking the bar area of the Input tab scrollbar to move

the target by 200) and use the graph to examine whether

it consistently overshoots (crosses zero before coming

to a stop and moving back) or undershoots (does not

reach zero before slowing down). The plot window

shown here, drawn for a system using a Derivative

Coefficient of zero, shows clear overshooting. In this

example, the error actually oscillates back and forth several times before settling down.

8. Increase the Derivative Coefficient to get rid of any

overshooting, but not so much that it undershoots. The

plot window shown here demonstrates undershooting,

using a Derivative Coefficient of 10. You can see that the

error never reaches zero. Instead, it gradually

approaches zero after each step.

9. Experiment with your system. Adjust any parameters as

necessary to get the behavior that you need.

The following example plot shows a well-tuned system, with Proportional, Integral, and Derivative

Coefficients of 6.0, 0.25, and 7.5. When taking steps, the system stops very quickly at a position with

very small error, randomly overshooting or undershooting by a small amount.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

5. Setting Up Your System Page 54 of 55

https://a.pololu-files.com/picture/0J1745.1200.png?6390737d8d0c7e22da56426753083183
https://a.pololu-files.com/picture/0J1745.1200.png?6390737d8d0c7e22da56426753083183
https://a.pololu-files.com/picture/0J1746.1200.png?c92bdfe8e8bc7c1e728f7dccdca1b61f
https://a.pololu-files.com/picture/0J1746.1200.png?c92bdfe8e8bc7c1e728f7dccdca1b61f
https://a.pololu-files.com/picture/0J1747.1200.png?f761a48c31754737c517ab565aff7ce3
https://a.pololu-files.com/picture/0J1747.1200.png?f761a48c31754737c517ab565aff7ce3

6. Writing PC Software to Control the Jrk
There are two ways to write PC software to control the jrk: the native USB interface and the virtual

serial port. The native USB interface provides more features than the serial port, such as the ability to

change configuration parameters and select the jrk by its serial number. Also, the USB interface allows

you to recover more easily from temporary disconnections. The virtual serial port interface is easier to

use if you are not familiar with programming, and it can work with existing software programs that use

serial ports, such as LabView.

Native USB Interface

The Pololu USB Software Development Kit [https://www.pololu.com/docs/0J41] supports Windows and

Linux, and includes C# source code for:

• JrkExample: an example graphical application that uses native USB to send commands and

receive feedback from the jrk and automatically recover from disconnection.

• JrkCmd: a command-line utility for configuring and controlling the jrk. JrkCmd has a

streaming mode that allows you to steadily stream all of the jrk variables to the computer and

output them in comma-separated format in case you want to make your own graphs or do

something special with the data.

• C# .NET class libraries that enable native USB communication with the jrk.

You can modify the applications in the SDK to suit your needs or you can use the class libraries

to integrate the jrk in to your own applications. Advanced users can also use the source code as a

reference when writing custom applications in any language that control the jrk over USB.

Virtual Serial Ports

Almost any programming language is capable of accessing the COM ports created by the jrk. We

recommend the Microsoft .NET framework, which is free to use and contains a SerialPort class that

makes it easy to read and write bytes from a serial port. You can download Visual Studio Express (for

either C#, C++, or Visual Basic) and write programs that use the SerialPort class to communicate with

the jrk. You will need to set the jrk’s serial mode to be either “USB Dual Port” or “USB Chained”.

Pololu Jrk USB Motor Controller User’s Guide © 2001–2019 Pololu Corporation

6. Writing PC Software to Control the Jrk Page 55 of 55

https://www.pololu.com/docs/0J41

	Pololu Jrk USB Motor Controller User’s Guide
	1. Overview
	Main Features of the Jrk 21v3
	Main Features of the Jrk 12v12
	Main Features of all Jrk Motor Controllers
	Specifications
	Included Hardware
	1.a. Module Pinout and Components
	1.b. Supported Operating Systems
	1.c. PID Calculation Overview

	2. Contacting Pololu
	3. Configuring the Motor Controller
	3.a. Installing Windows Drivers and the Configuration Utility
	COM ports
	Native USB interface
	3.b. Input Options
	Input scaling
	Input analog to digital conversion
	Serial interface
	Manually set target (serial mode only)

	3.c. Feedback Options
	Feedback scaling
	Input analog to digital conversion

	3.d. PID Options
	Preventing integral wind-up

	3.e. Motor Options
	Detect motor direction
	PWM frequency
	Limits
	When motor is off

	3.f. Error Response Options
	3.g. The Plots Window
	3.h. Upgrading Firmware

	4. Using the Serial Interface
	4.a. Serial Modes
	USB Dual Port
	USB Chained
	UART

	4.b. TTL Serial
	4.c. Command Protocols
	Compact Protocol
	Pololu Protocol

	4.d. Cyclic Redundancy Check (CRC) Error Detection
	4.e. Motor Control Commands
	Motor Off
	Set Target High Resolution
	Set Target Low Resolution Forward
	Set Target Low Resolution Reverse

	4.f. Error Reporting Commands
	Get Error Flags Halting
	Get Error Flags Occurred

	4.g. Variable Reading Commands
	4.h. Daisy-Chaining
	Using a PC and a jrk together as the master device
	Using a jrk as a slave device
	Connections
	Sending commands
	4.i. Serial Example Code
	4.i.1. Cross-platform C
	4.i.2. Windows C

	5. Setting Up Your System
	Connecting power and feedback
	Calibrating feedback
	Setting motor limits
	Connecting the motor
	Testing the motor
	Testing basic feedback
	Tuning the PID constants

	6. Writing PC Software to Control the Jrk
	Native USB Interface
	Virtual Serial Ports

